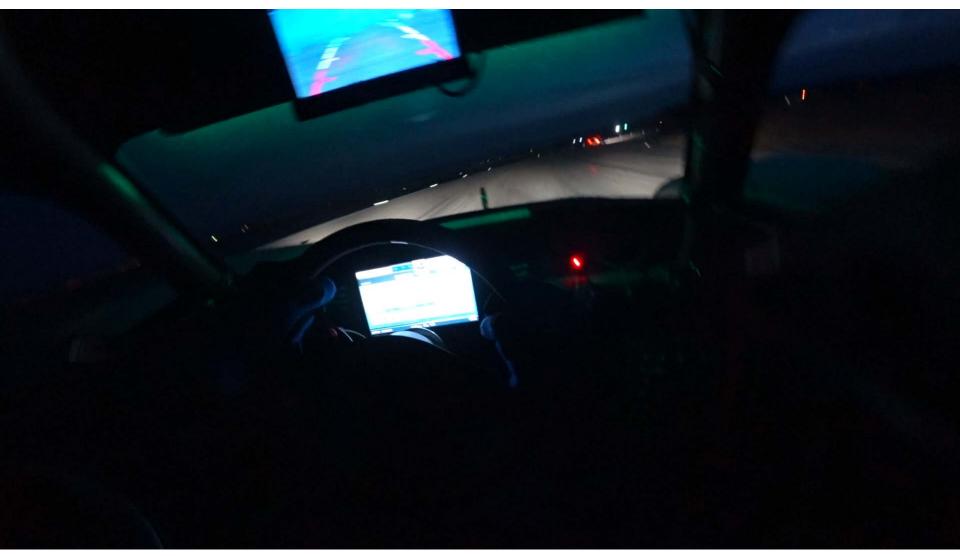


ECUs for Race Cars


2/3/2019 © Richard Gray Moorpark CA 0

 Elan NP01 Mazda 2.3l AEM ECU 240hp 1700lb w/driver (Richard Gray) 1.75 G's 150 mph max

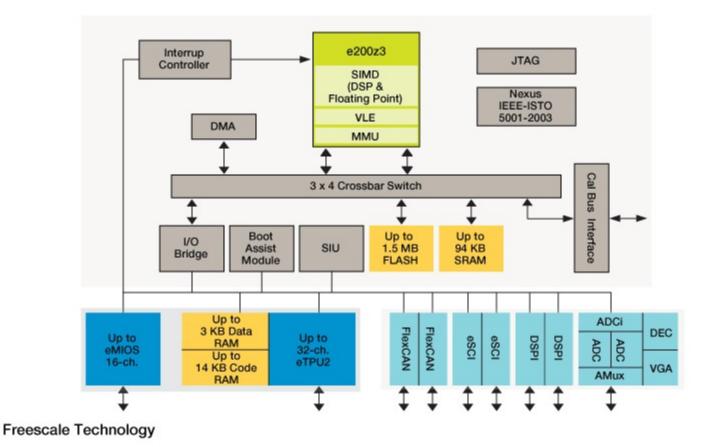
ECUs for Race Cars

WHAT IS AN ECU?

- Engine Control Unit
- A COMPUTER SYSTEM THAT RECEIVES DRIVER INPUT,
- AND MEASURES THE STATE OF THE ENGINE,
- AND SENDS APPROPRIATE SIGNALS TO THE ENGINE CONTROLS
- TO IMPLEMENT THE DRIVER'S COMMANDS
- (THROTTLE, FUEL MAP, ANTI-SLIP, ETC.)

AEM ECU – INFINITY MODEL 516

INSTALLATION IN ELAN RACE CAR



ECU Design Parameters

- Automotive Environment : Heat, Vibration, Moisture, Oil, Voltage, EMI
- Signal Speed: 10,000 RPM = millisecond cycle time with microsecond response
- Multiple In Multiple Out
- Mixed Signal I/O
- Real Time Processing
- Cost

GUTS OF ECU – NXP CHIP

32 BIT 80 Mhz 80 GPIO AD/DA CAN FLASH SYSTEM ON CHIP 1181 PAGE REFERENCE MANUAL 4 CYLINDER VERSION

ECU SIGNALS – I/O

- Data CAN UART
- Driver High Low side P vs N SiC MOSFET
- Digital:
- Analog: Sensor current or voltage
- AD levels and bits and speeds
- Protections: Short, over voltage, EMI

ECU INPUTS

• Driver:

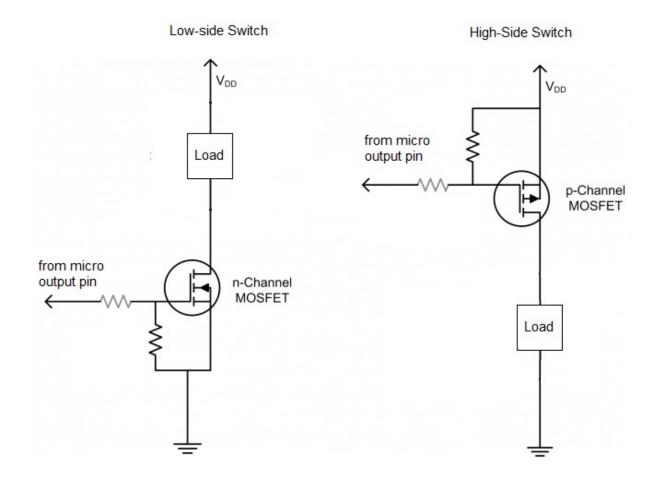
Throttle Gear Brake Steering Settings

• Engine:

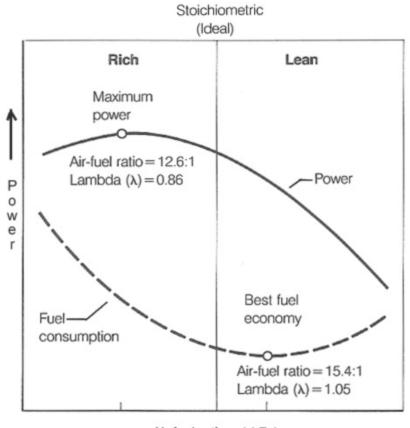
Temperatures Pressures RPM Positions

• Chassis:

Pressures Positions RPMs GPS



ECU OUTPUTS

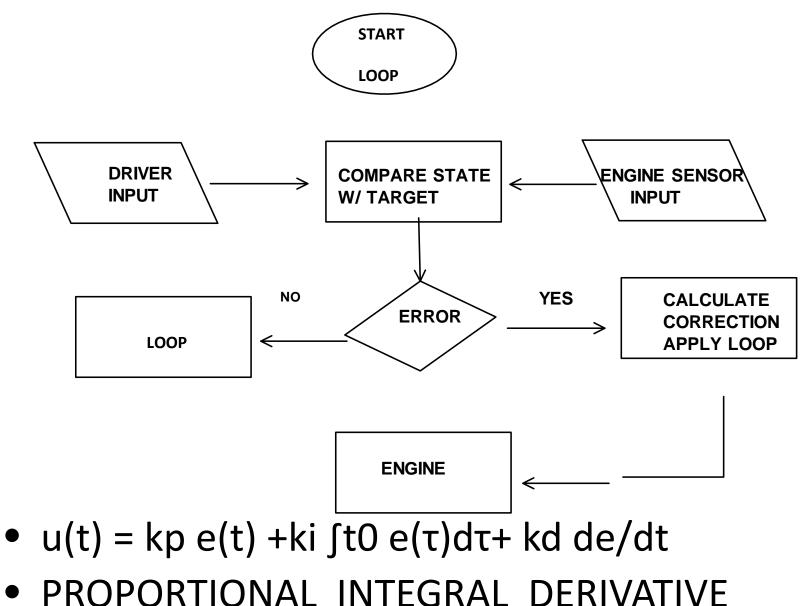

- Engine: Triggers & Data Ignition, Throttle, Fuel Injection, Fans, Pumps
- Driver: Data
 Dash Display, Data Logs

N vs P Channel MOSFET High Side vs Low Side Drivers

POWER VS AIR-FUEL RATIO

Air-fuel ratio = 14.7:1 Lambda (λ) = 1

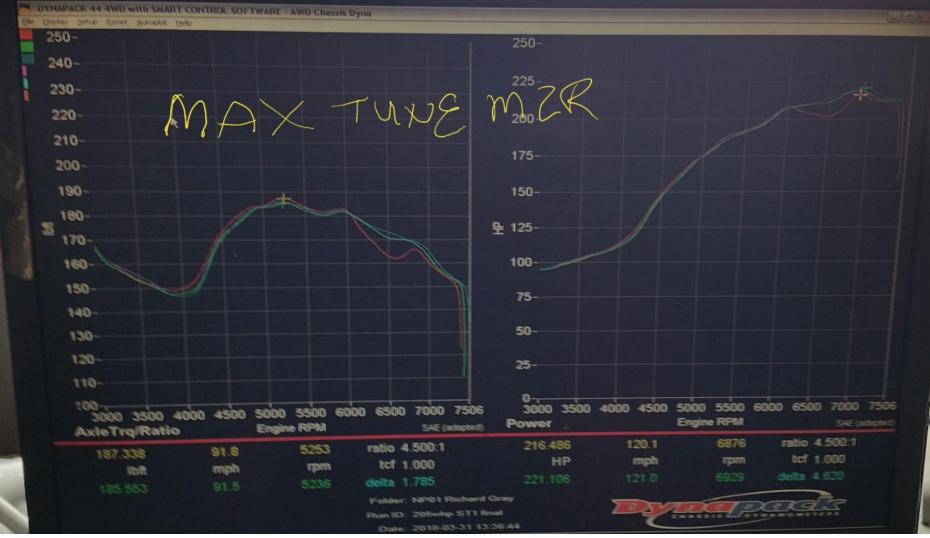
2 C8H18 + 25 O2 = 16 CO2 + 18 H2O + energy 46.7 MJ/kg



CONTROL


- What is Control? Providing signals to engine to obtain desired performance.
- Optimization target (power) is found on dyno
- Servo control theory requires some closed loop feedback (O2 sensor for Air/Fuel ratio)
- Dynamic adaptation allowed by new powerful chips
- Stability in AEM is from bounded adaption
- Primary design parameter is volumetric efficiency at each throttle position or manifold pressure vs rpm

BASIC PROGRAM OF ECU

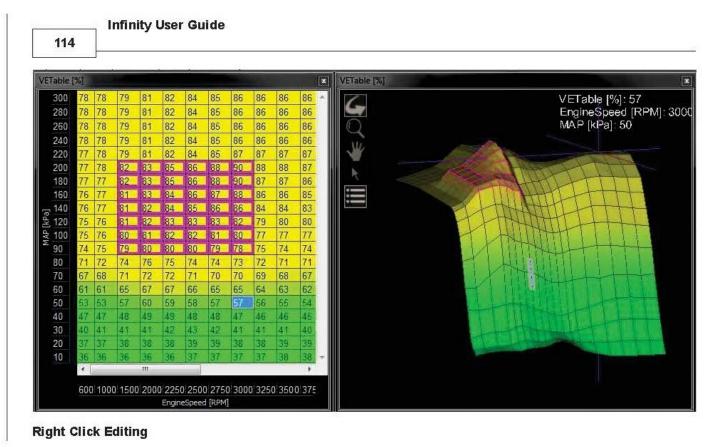


DYNO TUNING (DYNAPACK)

• HUB DYNO REAL TIME EDITING OF ECU TABLES

DYNO CURVE

• TORQUE


HORSEPOWER

TARGET LOOKUP TABLE

6.00	2.00	2.75	3.50	4.25	5.00	6.50	7.25	8.00	8.00	6.75	5.75	5.25	5.75	6.25	6.75	7.00	7.75	8.25	9.25
5.50	2.50	3.25	3.75	4.50	6.00	7.50	8.75	9.50	9.25	7.75	6.50	5.75	6.25	7.00	7.25	7.75	8.25	9.00	9.75
5.00	2.75	3.50	4.75	6.00	7.50	9.25	10.75	11.50	11.00	9.25	7.50	6.75	7.25	8.00	8.50	9.00	9.25	10.00	10.7
4.50	3.25	4.00	6.00	7.25	9.25	11.50	13.25	14.00	13.00	10.75	8.75	7.75	8.25	9.00	10.00	10.50	10.75	11.25	12.0
4.00	3.75	4.50	7.00	8.75	11.25	13.75	15.50	16.25	15.00	12.50	10.00	9.00	9.25	10.00	11.25	11.75	12.00	12.75	13.5
3.50	4.25	5.00	7.75	10.00	13.00	15.75	17.75	18.00	16.75	14.00	11.50	10.25	10.50	11.25	12.50	13.25	13.50	14.25	14.7
3.25	4.50	5.75	8.75	11.50	14.50	17.50	19.25	19.25	18.25	15.50	13.00	11.50	11.75	12.50	13.75	14.50	15.00	15.50	16.0
3.00	5.00	6.50	10.00	12.75	16.00	19.00	20.75	20.50	19.50	16.75	14.50	13.00	13.00	13.75	15.00	16.00	16.25	17.00	17.5
2.75 2.50 2.25 2.00 1.75	5.50	6.75	9.75	14.00	17.50	19.75	21.75	21.50	20.75	18.25	16.00	14.50	14.50	15.00	16.25	17.25	17.75	18.25	18.7
2.50	5.75	7.25	10.25	15.00		20.75							15.75	16.50	17.75	18.50	19.00	19.50	19.7
2.25	6.25	7.75	11.25			21.50									19.00			20.50	
2.00		8.25	11.75	17.00	20.75						20.25								
		8.50	12.00			23.00										22.00	22.25		
1.50		8.75	12.00			24.00							-						
1.25	8.00	8.75	11.50			24.75										25.75	26.00		_
1.00	8.00	8.50	11.00	15.00		26.00								27.25	27.50	27.75	27.75	28.00	
0.75	8.00		10.50			28.00										30.25	30.25		
0.50	8.00		9.75	14.00				34.00	34.00	34.00	34.00	34.00	34.00	34.00	34.00	34.00	34.00	34.00	
0.25		_	10.00	14.25			38.00	38.00	38.00	30.00	40.00	30.00	30.00	30.00	30.00	30.00	30.00	38.00	
0.00	0.00	0.00	10.00	14.25	24.00	57.50	40.00	40.00		40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.0
				1 martine		Participan -	1 Secondar												
	500	750	1000	1250	1500	2000	2500	3000		4000 eSpeed		5000	5500	6000	6500	7000	7500	8000	8500

• IGNITION TIMING FOR MASS AIR FLOW VS RPM

VOLUMETRIC EFFICIENCY TABLE

- VS RPMVE IS THEORETICAL PERCENT OF CYLINDER FILLING
- 0 AT CLOSED THROTTLE TO 300+ W/TURBO
- VE FOR MANIFOLD PRESSURE

ECU FUTURE

- End of era for internal combustion engine
- Electric motor control is already here
- EEG to ECU brain activity precedes motor activity. Faster reaction time
- Avatar racing.
- Autonomous race cars VR racing
- More distributed processors. IOT for each component of car.

ECUs for Race Cars

THANK'S FOR YOUR INTEREST, AND THANK YOU IEEE FOR THIS FORUM